

#### TB & HIV: The Terrible Twins



#### SAMA Annual Conference 2015

Yunus Moosa
Department of Infectious Diseases unit,
Nelson R. Mandela School of Medicine
University of KwaZulu-Natal
19th September 2015

#### Epidemiology of HIV-Related Tuberculosis

- One third of the world's population is infected with MTB
- ~ 9 million new cases of active TB in 2010

Estimated TB incidence rates, 2013 Estimated new TB cases (all forms) per 100 000 population per year 0-9.9 10-19 20-49 50-124 125-299 300-499 ≥500 No data Not applicable

SA >500/100000 vs. US 4/100000

Global TB Report 2014

#### **Epidemiology of HIV-Related Tuberculosis**

- Worldwide, 14.8% of TB patients are HIV coinfection
- ■TB is the most common cause of death among patients with AIDS responsible for about a third of AIDS deaths

Estimated HIV prevalence in new and relapse TB cases, 2013



#### TB and HIV

- TB is essentially an Immunologic disease with host tissue damage occurring during immune response to MTB
- HIV by "interfering" with the immune system alters the response to TB and fuels TB
- Converts TB into an "new" disease almost unrecognizable by clinicians familiar with TB in the pre-HIV era.
- Understanding the interactions between TB and HIV is critical to the management of both HIV and TB

#### **Outline of Presentation**

- Impact of TB on HIV
- Impact of HIV on TB

- Presentation of TB in coinfected
- Diagnosing TB in the coinfected
- Treatment of TB in the coinfected

- Timing of ART in TB
- Immune Reconstitution Inflammatory Syndrome

#### Impact of TB on HIV

- TB increases risk of HIV progression and death esp. with untreated HIV disease
- Immune activation → increases expression of HIV coreceptors on CD4 cells -CCR5 and CXCR4- increase substrate for viral infection and virus production
- TB coinfection associated with higher HIV viral loads

#### Impact of HIV on TB

- HIV mimics TB.
- Alters pathogenesis of TB
- Causes rapid progression from infection to disease
- Alters clinical presentation.
- Alters radiological appearance.
- Affects diagnostic tests.
  - Smear, culture
  - Histology
- Affects treatment: drug toxicity, drug interactions,
- Response to treatment- paradoxical reactions.
- Higher relapse of TB (~4 increased)
- Increased mortality (~4 fold)
- Impacts on response to treatment (regression of symptoms)

< 50% of cases diagnosed ante mortem



#### Risk of TB Disease

| Risk Factor      | Increase in risk of TB disease |
|------------------|--------------------------------|
| HIV/AIDS         | 113-170                        |
| Diabetes         | 4.1                            |
| "old TB" on CXR  | 13.6                           |
| CRF              | 25                             |
| Other conditions | 3-16                           |

#### TB and AIDS

Without HIV lifetime risk of TB in infected person is ~ 10%

With HIV life time risk is 50%



### Risk of TB is increased at <u>ALL</u> stages of HIV infection

- HIV affects CD4 cells both quantitatively and qualitatively
- TB risk doubled in the first year after HIV seroconversion
- Following effective immune reconstitution with ART the risk remains above the background risk of the general population.

#### Symptoms of TB in HIV

- Cardinal symptoms are same irrespective of HIV status
  - Cough
  - Fever
  - Night sweats
  - Weight loss

sensitivity ~70-80% - 20% no symptoms but has TB specificity ~ 50%- 50% symptoms but no TB

■ Low specificity due to other Ols with similar symptoms

#### Symptoms of TB in HIV

- How reliable is the absence of symptoms to exclude TB: Important to exclude TB prior to initiating ART or IPT
- Meta analysis of a symptom screening tool in HIV in RLS:
  - Prevalence 5% ⇒ NPV 97.7%
  - Prevalence 20% ⇒ NPV 90%
- Symptoms are usually due to an immune response
- Asymptomatic subclinical TB not uncommon in regions of high co-infection
- Active TB may be missed by symptom screen alone.

#### Clinical Presentation of TB

- Varies widely- generally similar to HIV uninfected
- Presentation often reflects level of immunosuppression
- Earlier in HIV → classic reactivation-disease
- Advanced immunosuppression similar to primary TB

### Impact of HIV on Organ system involvement by TB



### Organ System involvement is related to level of immunosuppression



#### Common Sites of Extrapulmonary TB

- Lymph node disease:
  - –peripheral cervical > axillary > inguinal
  - -central mediastinal > hilar, intra-abd.
- Disseminated disease
- Serositis- pleural, pericardial > ascites
- CNS- meningitis, tuberculoma
- Soft tissue abscesses

## The chest radiograph the cornerstone of diagnosis for pulmonary TB

Upper-lobe infiltrates and cavities typical of reactivation TB is seen with higher CD4 counts (>350 cells/µL)

#### Reactivation (Post-Primary/Secondary) TB





# The chest radiograph the cornerstone of diagnosis for pulmonary TB

Primary disease characterized by intrathoracic lymphadenopathy & lower-lobe infiltrates is seen with more immunosuppression (CD4 <100)

#### AIDS/TB Chest X-ray

Bilateral hilar/ mediastinal LAN





RML Infiltrate

Pleural Effusion















#### Pathology of Miliary TB





## The chest radiograph is **no** longer the cornerstone for diagnosis of PTB

Chest radiographs may appear normal in up to 21% of culture-positive TB with CD4 <50</p>

#### Role of the CXR in diagnosing TB

Sensitive ~76%Specificity ~68%Risk of over or under diagnosing

- When should do CXR:
  - Complications: pneumothorax, effusion, hemoptysis.
  - Coexistent lung disease.
  - Smear negative patient with strong suspicion of TB.

#### Diagnosing TB

- Symptoms
- Signs
- Ancillary Investigations:
  - CXR
  - Hb
  - Albumin
  - ESR
  - CRP

Sensitive but not specific

Unhelpful for diagnosis

Helpful for monitoring response to Rx

# Diagnosing TB: Detect organism or DNA

- Microscopy
- Culture
- PCR based assays

## AFB Smear- Microscopic examination for AFB

- Historically mainstay for the diagnosis of TB
- Hi specificity
- Rapid turn around time
- Low sensitivity- non-cavitary Dx & HIV (~ 35%)
- Require a minimum of 10,000 AFB/ml of sputum for smear to be positive

#### Culture

- Makes definitive diagnosis of TB
- Detects fewer AFB: limit 10-100 org/mL (100-1000x more sensitive than smear)
- Time to positivity depends on org. load- median time 3/52
- Expensive, need skill technologists, infrastructure
- Estimated ~ 15% of reported TB cases are culture negative
  - 1 MGIT culture identifies 71% cases
  - 2 MGIT increase yield to 88% (17% increase)
  - 3 MGIT identifies 98% cases (10% more cases)

Depends on the number of times the culture is repeated.

# Culture- Important diagnostic tool in paucibacilliary Disease

- When should you culture:
  - TB suspects with negative GeneXpert test
  - To confirm GeneXpert showing rifampicin resistant
  - To check susceptibility to other drugs
  - Patient failing treatment despite RIF susceptible- high suspicion of resistance to other drugs

#### 2 different molecular based tests available

■ The Gene Xpert (GXP)

■ The Line Probe assay

# Gene Xpert

- Automated PCR based
- Replaced sputum smear as rapid screening tool
- Allows for rapid diagnosis in SND processing time ~ 2hours.
- Uses sputum minimal pre-processing prior to loading instrument
- Validated for CSF, gastric aspirate, L/N aspirate and tissue (i.e. pleural biospy)
- Instrument is a closed system → low risk for contamination, minimal expertise required, low risk for human error.
- Detects TB & RIF Ω

# Gene Xpert





- Not a monitoring tool high false positive in previously treated TB- 27% GXP positive after 6/12 ATT
- Cannot identify XDR TB
- Detects a minimum of ~130 org/ml sputum

# Gene Xpert

|                                     | Sensitivity | Specificity |
|-------------------------------------|-------------|-------------|
| Smear positive disease              | 98.2%       |             |
| Smear negative disease – one sample | 72.5%       | 99.2%       |
| Smear negative disease – 3 samples  | 90.2%       |             |
| Rifampicin Susceptibility           | 97.6%       |             |
| Rif resistance                      | 98.1%       |             |
|                                     |             |             |

# Line Probe Assay

- Approved for direct testing on smear positive specimens and isolates from solid and liquid culture for smear neg.
- PCR based identifies MTB and specific mutations that confer RIF and INH resistance
- Results within 48 hours in the lab & 7 days in health facilities.
- Used as guide whilst awaiting phenotypic tests- 6-8wks
- Labour intensive, prone to contamination, human error, highly trained staff, special equipment & infrastructure

# SA TB programme

Approach to the diagnosis of TB centered on GXP due to the high burden of HIV and MDR-TB





#### **Treatment**

- 6/12 standard therapy adequate
- Longer treatment may ↓ relapse no RCT
- ART is recommended during TB therapy regardless of the CD4 cell count ↓ mortality, ↓ HIV progression.
- Overlapping toxicities & drug-drug interactions with ARVs requiring dose modification, alternate regimens and alternate rifamycins.

## TB while on ART

- Use standard first line treatment:
  - TDF/3TC/EFV
  - EFV is preferred over NVP
- On LPV/r second line ART:
  - Double dose LPV/r

## **Toxicities**

- S/E twice as common in HIV coinfected (26 vs. 13%)
  - hepatotoxicity,
  - Peripheral Neuropathy
  - Vomiting
  - Arthralgia
  - Rash
- Peripheral neuropathy INH, stavudine, didanosine
- DILI INH, rifampin, pyrazinamide, NRTIs, NNRTIs, and PIs.

# Timing of ART in TB

- CD4 ≤ 50 -ART within 2wks of TB treatment
  - Reduced AIDS progression and mortality



# Timing of ART in TB

- CD4 >50 -ART after intensive phase of TB treatment.
  - Reduced overlapping toxicity, reduce risk of IRIS
- Early ART requires
  - Coordination between TB and HIV care
  - Vigilance for drug toxicities
  - Adherence to high pill burden
  - Vigilance for IRIS

## What is IRIS?

- Aberrant manifestation of immune reconstitution → pathogen specific inflammatory response triggered by:
  - Initiation HAART
  - Re-initiation HAART
  - Change to more active HAART
- Two forms: Paradoxical, Unmasking

## Paradoxical IRIS

- Clinical deterioration while on effective ATT
- Development of new or worsening clinical symptoms or signs of TB
  - Fever, night sweats, weight loss
  - Respiratory symptoms
  - Enlarged lymph nodes
  - Worsening radiologic features
  - New or worsening CNS manifestations

#### Paradoxical IRIS

- Associated with:
  - Low CD4
  - High viral load
  - Short interval bet TB Rx and ART initiation- 2-3 months of ART
- Diagnosis of exclusion: other O/Is, poor adherence, MDR
- Managed symptomatically, severe IRIS consider prednisone
- ART continued as far as possible.
- TB IRIS is seldom fatal

## Unmasking IRIS

- New diagnosis of TB after initiation of ART in a patient who, prior to commencing HAART, had no features to suggest TB.
- Sub-clinical or unrecognised infections "unmasked" by the emergence of pathogenspecific immune responses.

#### Conclusion

3

- HIV has converted TB into a more complex disease
- Impacts virtually all aspects of the disease
- Diagnostic challenges →resort to molecular methods for rapid diagnosis
- Management complicated by drug interactions, overlapping toxicities
- Response to treatment confounded by IRIS
- Despite all, TB in the coinfected can be cured